Regulation of ocular lens development by Smad-interacting protein 1 involving Foxe3 activation.
نویسندگان
چکیده
Sip1, a Smad-binding zinc-finger homeodomain transcription factor, has essential functions in embryonic development, but its role in individual tissues and the significance of its interaction with Smad proteins have not been fully characterized. In the lens lineage, Sip1 expression is activated after lens placode induction, and as the lens develops, the expression is localized in the lens epithelium and bow region where immature lens fibers reside. The lens-lineage-specific inactivation of the Sip1 gene was performed using mice homozygous for floxed Sip1 that carry a lens-specific Cre recombinase gene. This caused the development of a small hollow lens connected to the surface ectoderm, identifying two Sip1-dependent steps in lens development. The persistence of the lens stalk resembles a defect in Foxe3 mutant mice, and Sip1-defective lenses lose Foxe3 expression, placing Foxe3 downstream of Sip1. In the Sip1-defective lens, beta-crystallin-expressing immature lens fiber cells were produced, but gamma-crystallin-expressing mature fiber cells were absent, indicating the requirement for Sip1 activity in lens fiber maturation. A 6.2 kb Foxe3 promoter region controlled lacZ transgene expression in the developing lens, where major and minor lens elements were identified upstream of -1.26 kb. Using transfection assays, the Foxe3 promoter was activated by Sip1 and this activation is further augmented by Smad8 in the manner dependent on the Smad-binding domain of Sip1. This Sip1-dependent activation and its augmentation by Smad8 occur using the proximal 1.26 kb promoter, and are separate from lens-specific regulation. This is the first demonstration of the significance of Smad interaction in modulating Sip1 activity.
منابع مشابه
Zebrafish foxe3: Roles in ocular lens morphogenesis through interaction with pitx3
Foxe3 is a winged helix/forkhead domain transcription factor necessary for mammalian and amphibian lens development. Human FOXE3 mutations cause anterior segment dysgenesis and cataracts. The zebrafish foxe3 cDNA was PCR amplified from 24 h post-fertilization (hpf) embryo cDNA. The zebrafish foxe3 gene consists of a single exon on chromosome 8 and encodes a 422 amino acid protein. This protein ...
متن کاملFOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1
FOXE3 is a lens-specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole-e...
متن کاملConvergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification.
Xenopus is ideal for systematic decoding of cis-regulatory networks because its evolutionary position among vertebrates allows one to combine comparative genomics with efficient transgenic technology in one system. Here, we have identified and analyzed the major enhancer of FoxE3 (Lens1), a gene essential for lens formation that is activated in the presumptive lens ectoderm (PLE) when commitmen...
متن کاملPitx3 directly regulates Foxe3 during early lens development.
Pitx3 is a bicoid-related homeodomain transcription factor critical for the development of the ocular lens, mesencephalic dopaminergic neurons and skeletal muscle. In humans, mutations in PITX3 are responsible for cataracts and anterior segment abnormalities of varying degree; polymorphisms are associated with Parkinsons disease. In aphakia (ak) mice, two deletions in the promoter region of Pi...
متن کاملA Role for Smoothened during Murine Lens and Cornea Development
Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 20 شماره
صفحات -
تاریخ انتشار 2005